Carbon Arrow Selection & Research Guide | Chapter 4 | Read the Arrow Safety Bulletin |
![]() ![]() ![]() ![]() ![]() |
PLASTIC VANES OR REAL FEATHERS? |
![]() STANDARD PLASTIC VANES (RUBBER BASED)`Standard vanes are made of soft flexible plastic and are the popular choice for today's archer. They're inexpensive, easy to apply, quiet in flight, available in almost any size/color and they can be easily fletched in a number of different patterns (straight/offset/helical). Since vanes are impervious to water, they make an excellent all-weather choice for hunting. In addition, they're also relatively durable. Vanes can be crumpled and abused (up to a point of course) and they still pop back into shape. If they do manage to get wavy or stretched out of shape, they can be easily heat-treated with a hair dryer to make them pop back into shape. So vanes are clearly the low-maintenance choice. The only major downside is weight. Compared to feathers of the same size, vanes are heavier, as much as 3X the weight of a comparable length feather. And it's also worth considering how the smooth surface of a vane doesn't "dig-into" the air as well as the rougher corrugated surface of natural feathers (nature knows best perhaps). So all other things being equal, vanes don't stabilize arrow flight quite as well as feathers. But don't make too big of a deal out of the vane's limitations. For the vast majority of applications, they're more than sufficient. |
![]() |
![]() ![]() |
FLETCHING TURN STRAIGHT, OFFSET OR HELICAL? Another factor that determines the effectiveness of your fletching is the turn, or angle of the fletch on the shafts. If your fletching is arranged in a helical (spiral) pattern - like a boat propeller - your arrow will rotate in flight. Much like a football that's thrown with a perfect spiral, an arrow will fly straighter and be more stable if it rotates in-flight. Aerodynamically, a helical configuration is clearly a better choice. However, a helical fletch may not always be appropriate or necessary for your particular bow setup. For example, some arrow rests will not provide enough clearance to allow a helical fletch to pass thru without contact. In this case, many archers use an offset fletch, where the vanes are still straight, rather than in a spiral pattern, but they are slightly turned on the shaft to promote some rotation in-flight without compromising fletching clearance. For very unforgiving arrow rests with limited clearance, or for competition target setups that don't require much stabilization, the straight fletch may be the best option. Take a look at the diagrams below and the corresponding pros and cons associated with each fletching configuration. When you order your arrows, you'll need to select one of these options. |
STRAIGHT![]() Pro: fastest flying vane configuration Pro: least amount of air resistance Pro: works with any arrow rest Pro: minimal fletching clearance problems Con: less stable at long distances Con: less stabilization for broadheads Con: best used in a well-tuned bow |
OFFSET![]() Pro: better broadhead stabilization. Pro: minimal air resistance in flight Pro: works with most arrow rests Pro: stable flight to intermediate distance Con: needs more fletching clearance Con: loss of velocity (tiny) MOST POPULAR CHOICE |
HELICAL![]() Pro: best broadhead stabilization Pro: most consistent arrow flight Pro: increased overall distance accuracy Pro: corrects flight attitude problems Con: loss of arrow velocity in flight Con: fletching clearance problematic Con: not compatible with containment rests |
A FEW LIMITATIONS` Please note that some types of fletching can only be fletched certain ways. Feathers generally come in a right-wing or left-wing pre-formed helical shape. So feather fletching will always be helical. Forcing a feather into a straight clamp to produce an offset or straight fletch is not recommended (distorts the cupped shaped of the feather). Also, if you are a fan of the short 2" high profile vane, please note a few degrees of offset over a short 2" span will not be obvious with a visual inspection. As you might imagine, this causes some confusion (and customer service drama). So we generally sell and fletch 2" high profiles in the straight configuration only. WHAT ABOUT RIGHT VS LEFT? If you choose to go with an offset or helical fletch, the arrow will rotate in flight. But which way should it rotate? Right or left? The answer is, sometimes it matters, sometimes it doesn't. So here are a few things to think about. An arrow with a right turn will rotate clockwise (as viewed from the nock) during flight. An arrow with a left turn will rotate counterclockwise. So what's the big difference? With most modern setups, nothing. One is as good as the other regarding flight. The only major difference is left-turn fletched arrows tend to impact the target and loosen your tips, while right-turn (clockwise) arrows tend to impact the target and tighten your tips. Otherwise, it really makes no difference. Nonetheless, the traditional belief that RH shooters should shoot a right turn fletch and LH shooters should shoot a left turn fletch still persists. Unfortunately, this thinking is a leftover rule of thumb from the days before compounds and the center-shot cutaway riser. It doesn't apply to modern compounds. If you shoot a modern compound with a bolt-on arrow rest, choose a RH turn fletch and call it a day. But if you shoot a traditional bow or you have an old-fashioned flipper or plunger style rest on a non-center-shot riser bow, by all means, match the fletch and the hand. We generally don't list LH turn options on our online ordering system (to avoid confusion), but if you want a LH configuration please call 877.410.7811 and we'll talk it over. |
MORE FLETCHING CHOICE CONSIDERATIONS |
FLETCHING SURFACE AREA` The larger your fletching, the larger the surface area and contact patch with the wind. So a larger 4-5" fletch certainly has some aerodynamic advantage when it comes to correcting unstable arrow flight. If you shoot a big gnarly fixed-blade broadhead, or if you're a finger/traditional shooter, you should definitely get the larger fletching material. You'll need it. But if you shoot a well-tuned modern compound with a mechanical release and expandable broadheads, a 2-3" fletch will be plenty. A jumbo fletch on a prime modern rig is arguably just dead weight. FLETCHING WEIGHT` If you're concerned about your finished arrow weight or your F.O.C. balance (more on this in a moment), it's worth noting that your choice and size of fletching material will have an impact on both of those attributes. Three standard 4" vanes will add about 24 grains to your total arrow weight. Three standard 3" vanes are about 19 grains, and three of those fancy high-profile vanes weigh in at roughly 18 grains. As we mentioned earlier, feathers are notably lighter (about 9 grains for three 4" feathers and 6 grains for three 3" feathers). So if getting the fastest possible arrow speeds is a critical consideration for you, this is a no-brainer. Nothing is going to go faster than feathers. But let's keep this in reasonable perspective. Shaving 10 grains of arrow mass equates to a 2-3 fps speed increase on a typical modern bowhunting rig. So the difference in a "heavy" 4" vane and a lightweight 3" feather, realistically, will be just 6-8 fps at the chronograph. Whether or not that's a critical difference is up to you to decide. |
FOC (FRONT OF CENTER BALANCE) |
OPENING THE CAN OF WORMS` We mention this issue with a certain degree of caution, as it often provides more of an academic exercise than a pragmatic way to select arrows. If you're not familiar with the concept, FOC (front of center or sometimes forward of center) refers to the balance point of the arrow, end to end. If you've ever played darts, you've surely noticed that the dart is designed so that it's heavy in the front and light in the back. If the dart were weighted the opposite way, with the tail being heavier than the tip, it would literally flip around and hit the target tail-first. Obviously the ballistics of a dart and an arrow are a bit different, but the underlying concept is similar. A projectile's flight is most stable when most of the projectile's mass is positioned on the leading side. As such, an arrow, like a dart, should be heavier in the front than in the back. But how much? Where's the "perfect" balance point? Most experts suggest a balance point of 7-15% front/forward of center. BEFORE WE WADE IN` We should get in a quick reality checkpoint before we discuss this. If your FOC is really really out of whack, it's an issue, but most common arrow components tend to yield finished arrows well within the recommended 7-15% FOC range. If you're buying typical hunting arrows, it's going to be a non-issue. Move on. The only real danger of slipping off the FOC precipice is if you use really heavy fletching and super-lightweight target nibbs, or if you choose small light fletching and a macho man tip weight (or a heavy brass insert). For common arrows with basic vanes or feathers, aluminum inserts, and 85-125 grain tips, chances are your FOC will come out just fine. ![]() DOES IT REALLY MATTER? Yes. It is generally believed that an arrow with a high FOC will fly well, but with premature loss of trajectory (nose-diving). While an arrow with a very low FOC will hold its trajectory better, but it will fly erratically. So you might think of this as a trade-off to consider, but again, if you're ordering standard hunting arrows, the FOC exercise will almost certainly be academic. It's a problem that really isn't a problem until we make it one. Nevertheless, this is a commonly debated issue among archery enthusiasts. In fact, some of the self-proclaimed chat board gurus seem intent on beating the FOC issue to death. We submit it's a dramatically over-analyzed topic. There! We said it. DONT READ THIS PART` If you're going to join the FOC math club warriors, don't assume that the mathematical average (11%) of the recommended 7-15% range is somehow the best score. It doesn't work that way. The ballistic physics for FOC include some rather elastic variables that make finding a "mathematically optimal" FOC very difficult to prove. To make matters worse, there are a couple variations on how FOC itself is calculated (some include the tip of the arrow in the length measurement, some stick with the AMO arrow length measurement, etc.). If you want to get out your scientific calculator and give the ballistic physics a whirl, more power to you. But be advised, most people inside the industry, including the arrow manufacturers, routinely roll their eyes when customers start talking about FOC. We're not saying you shouldn't be aware of it, but just be advised, you'll be "that guy" if you make a big deal about FOC at the pro-shop counter. |
TRENDS & RECOMMENDATIONS |
THE POPULAR CHOICES` Just so you know, the 3" offset vane is king. If we fletch 100 dozen arrow orders, at least 50 of those orders will be for 3" offset vanes (in bright colors). The next 30 orders will be for 2" high-profile vanes (in bright colors) and the remaining 20 orders will be a mixture of 4" vanes, feathers, straight and helical turn fletching. We're not suggesting you jump off a fletching bridge just because your friends do, but we thought it might be helpful to know what most bowhunters are actually buying, and that is 3" offset bright colored vanes. They work.![]() |
Carbon Arrow Selection & Research Guide | Chapter 4 |
![]() ![]() ![]() ![]() ![]() |